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Abstract. In this paper a portfolio optimization algorithm based on
Evolution Strategies is presented. This method makes use of artificial
trading experts discovered earlier by a genetic algorithm. These experts,
consisting of technical analysis rules, are trained to process financial
time series and to generate trading advice. Evolution Strategies lead to
the optimization of portfolio structures where individual trading experts
advice is integrated. This approach is tested on a sample financial time
series taken from the Paris Stock Exchange. The resulting investment
strategy has been compared with the Buy-and-Hold strategy and the
market index. The research presented extends our previous research into
stock trading.

1 Introduction

Nowadays, more and more attention is given to methods based on the principle
of evolution. Evolutionary Computation has become a subject of general interest
with regard to the power to solve complex optimization problems.

Evolutionary Computation has been successfully incorporated into many
fields of science and technology. This paper presents an application of Evolu-
tionary Computation within the field of financial economics to the problem of
portfolio optimization, the problem being the minimization of risk attached to
investments where a certain level of return is desired. Although a few analytical
methods have been discovered, [18], an extension of the problem, by introducing
additional risk measures, such as semivariance of return, and losing several arti-
ficial assumptions, requires a new efficient algorithm, which cannot be developed
on the basis of classical methods.

There have been several attempts of using artificial intelligence methods to
solve financial problems. In [3] an application of evolutionary methods to ana-
lyze the financial time series is presented. Portfolio optimization using genetic
algorithms is also described in [Loraschi 1995].

The approach presented here combines the power of genetic algorithms, [5],
[15], used to generate artificial trading experts. These algorithms analyze the
financial time series of considered stocks against the opportunities provided by
Evolution Strategies, [1], [20], which, in turn leads to the optimization of portfolio
structures where individual trading experts advice is integrated.



This paper constitutes an extension of research carried out by the Artifi-
cial Intelligent Research Team of the Laboratoire des Sciences de l’Image, de
l’Informatique et de la Teledetection, CNRS, ULP, Illkirch, France presented in
[9].

This paper is structured in the following way: Section 2 defines the problem
of portfolio optimization. Section 3 presents financial time series used in the
proposed approach. In section 4, a trading process is described in detail and main
assumptions and ideas are indicated. In section 5, the proposed algorithm based
on Evolution Strategies is described. Section 6 presents experiments and their
results. Section 7 concludes the paper and suggests some interesting extensions
of the presented approach.

2 Portfolio Optimization

The main goal of investors is optimal allocation of funds among various finan-
cial assets. Searching for an optimal stock portfolio, characterized by random
future returns, seems to be a difficult task and is usually formalized as a risk-
minimization problem under a constraint of expected portfolio return. The port-
folio risk is often measured as the variance of returns but many other risk criteria
have been proposed in financial literature.

Portfolio theory may be traced back to seminal paper [14] and is presented
in an elegant way in [6] or [18].

The problem considered in this paper consists of minimizing an investment
risk but keeping the desired expected return. When the risk is defined as a
variance of an investment, the problem can be easily solved using analytical
methods. In the approach presented here, the risk is defined as a semivariance of
an investment, so the standard analytical methods cannot be applied, because
of the complexity of the problem.

The problem of portfolio optimization can be defined in the following way:
Consider a financial market on which N risky assets are traded. Let

R′ = (R1, R2, . . . , RN )

be the square-integrable random vector of their returns.
Denote as r = ER the vector of expected returns and V the corresponding

covariance matrix which is assumed positive definite.
A portfolio is a vector x ∈ RN verifying x′1 = 1, where 1 is a N -component

vector of ones. Hence xi is the proportion of wealth invested in the i-th asset.
Denote as X the set of all portfolios. For each x ∈ X, we define Rx = x′R

as the portfolio return and then x′r = ERx is the portfolio expected return.
For a fixed level e of expected return, Xe = {x ∈ X : x′r = e} is the set of all

portfolios leading to the desired expected return e. The optimization problem is
then to find x̃ such that:

Risk(x̃) = min{Risk(x) : x ∈ Xe}



where Risk(.) is the risk indicator (variance of returns in the Markowitz theory).

As individuals choose optimal portfolios according to their criteria, equilib-
rium stock prices arise on the financial market. The most celebrated equilib-
rium model, the so-called CAPM, was introduced by W.Sharpe, J. Lintner and
J.Mossin in the mid-sixties [21], [12], [17]. The essential result is based on the
perfect market assumption (no transaction costs, no restrictions on short selling
and perfect divisibility of stocks) along with homogeneous expectations, meaning
that investors possess the same information and interpret it in the same way.

In spite of its wide diffusion throughout the professional and academic world,
the CAPM is often criticized for its artificial assumptions. Although it is an
interesting theoretical model, its practical applications may often misfire.

3 Financial Time Series

In this paper, real data from the Paris Stock Exchange is considered, especially
quotations of stocks belonging to its market index the CAC40. The time series
contains the opening, high, low and closing prices as well as the transaction
volume of each stock. Time series of the market index value (CAC40) are also
available. The 40 stocks are tracked over a period of about 4 years beginning
January 2, 1997.

Our approach to portfolio optimization is founded on the idea that efficient
trading rules can be discovered using evolutionary methods from financial time
series. These rules can form the trading experts that advise the portfolio op-
timization program as to when a given asset should be bought or sold. The
details of the process of generating artificial trading experts is described in [8].
These experts state a part of input data for the portfolio optimization algorithm
presented here.

A sample of input data containing the close prices of a few titles and the
index value used in further examples presented in this paper is given in Table
2.1. The close price is used to calculate portfolio value. The return rate of the
portfolio is compared with the index rate.

The real tests require a huge amount of data, thus only a brief summary of
these tests will be presented in this paper.



Table 2.1. Financial Time Series - Close Prices and CAC40 Values
Date BNP Bouygues France Telecom Peugeot Renault TF1 CAC40

10-27-2000 94.00 60.45 125.90 207.80 53.90 63.40 6268.93
10-26-2000 94.65 59.10 119.00 211.90 51.00 67.35 6208.42
10-25-2000 96.65 58.70 123.00 214.00 50.65 67.90 6277.90
10-24-2000 96.50 58.00 121.10 209.50 50.35 69.90 6323.74
10-23-2000 94.20 54.05 113.00 208.70 48.96 66.30 6182.34
10-20-2000 93.00 55.40 107.60 204.40 49.99 65.05 6149.44
10-19-2000 93.20 54.70 103.00 203.20 48.92 65.20 6066.48
10-18-2000 92.05 51.40 98.20 201.60 48.80 63.45 5937.35
10-17-2000 92.80 51.00 102.20 201.30 49.22 63.00 6067.15
10-16-2000 91.05 47.45 102.00 205.80 49.66 61.00 6088.04
10-13-2000 91.20 46.80 101.00 208.70 49.20 57.00 6064.21
10-12-2000 89.80 47.95 98.25 211.90 49.00 57.40 5990.70
10-11-2000 89.00 47.00 96.20 207.50 49.00 59.20 5956.12
10-10-2000 95.60 51.70 103.10 211.20 51.00 60.00 6143.30
10-09-2000 96.50 50.40 108.50 216.00 51.00 55.50 6110.06
10-06-2000 100.30 51.05 115.00 214.50 51.15 60.25 6258.41
10-05-2000 99.75 54.95 120.00 214.40 51.70 63.50 6335.12
10-04-2000 99.95 55.65 120.30 211.50 52.50 63.70 6296.13
10-03-2000 99.00 57.95 125.00 211.00 51.00 64.50 6400.43
10-02-2000 102.10 56.90 123.00 210.10 50.90 62.55 6349.24
09-29-2000 99.90 57.10 121.40 201.30 48.60 65.00 6266.63

Source : Bourse-Experts Database http://www.bourse-experts.com

4 Trading Process

4.1 Artificial Trading Experts

The portfolio optimization process make use of advice provided by artificial
trading experts discovered earlier by a genetic algorithm. These experts are based
on technical analysis rules which assume that future trends can be identified more
or less as a complicated function of past prices. Using a trading rule is a practical
way of identifying trends and generating buying and selling signals.

Let S be the set of technical analysis trading rules used to take a trading
decision on the market. Let M denote the cardinality of S. On the basis of past
prices, each rule generates a signal: to sell, to hold or to buy. For computing
simplicity these decisions will be replaced with real numbers, 0.0, 0.5 and 1.0
respectively.

In this approach, an expert e = (e1, e2, . . . , eM ) is an M -dimensional binary
vector. An i-th coordinate of the expert is equal to 1 if and only if, the expert
uses the i-th rule in the decision process to generate a trading advice. Thus,
there are 2M possible experts, but only a few of them are usually efficient.

For example, e = 001101 means that expert e generates advice on the basis
of rules numbered 3, 4 and 6.



In order to generate expert advice, an arithmetic average d̄ of active rules
decisions is calculated as follows:

d̄ =
∑M

i=1 ei · di∑M
i=1 ei

,

where di denotes the decision of the i-th rule.
Next, the obtained number d̄ is transformed to a decision, i.e. a number 0.0,
0.5 or 1.0. This can be done by means of a valuation function f and an earlier
chosen threshold s ∈ [0.00, 0.50] as follows:

f(d̄) =



0.0, if d̄ ≤ s
0.5, if s < d̄ < 1− s
1.0, if 1− s ≤ d̄

Finally, advice given by the expert is equal to f(d̄).
For example, e = 001101, two rules lead to buy and one leads to do nothing.

Hence d̄ = 0.8333. The final decision is to buy the stock as long as 1−s ≤ 0.8333,
where s denotes the earlier chosen threshold.

This threshold can be referred to as the risk aversion coefficient of the expert.
For low levels of s the probability of doing nothing is high because the interval
[s, 1− s] is large. Consequently, the strategy is conservative and the expert does
not transact frequently. If the opposite is true, i.e. if s is near to 0.50, almost all
decisions will be to buy or to sell.

Artificial trading experts are generated daily for each stockholding in the
portfolio under consideration according to the process described in [8]. These
expert decisions constitute the soul of a trading process presented in next section.

4.2 Trading Process

Let at = (a
(1)
t ,a(2)t , . . . ,a(N)t ) denote the vector of expert advice for each stock-

holding constituting a given portfolio at the end of day t. Let S = {1, 2, . . . , N}
and

S
(b)
t = {i ∈ S : a(i)t = 1.0},

S
(h)
t = {i ∈ S : a(i)t = 0.5},

S
(s)
t = {i ∈ S : a(i)t = 0.0}.

S
(b)
t is the set of stocks which experts advise buying, S

(h)
t is the set of stocks

which experts advise holding and S
(s)
t is the set of stocks which experts ad-

vise selling. Superscripts (b), (h), (s) are abbreviations of ’buy’, ’hold’ and ’sell’
respectively.

At the beginning of day t+1, a non negative number of stocks of each stock
from S

(s)
t will be sold and a non negative number of stocks of each stock from S

(b)
t

will be bought. Let ∆xt = (∆x(1)t ,∆x(2)t , . . . ,∆x(N)t ) denote the vector made up
of numbers of traded stocks.



For example, ∆xt = (10, 20, 0,−12)′ means that 10 stocks of first stock are
bought, 20 stocks of second stock are bought and 12 stocks of fourth stock are
sold.

The following constraints should of course be fulfilled:

∆x(i)t > 0, for i ∈ S
(b)
t ,

∆x(i)t = 0, for i ∈ S
(h)
t ,

∆x(i)t < 0, for i ∈ S
(s)
t .

Moreover, a budget constraint, as presented below, should be fulfilled.
∑

i∈S
(b)
t

(1 + c) · p(i)t+1 · ∆x(i)t ≈
∑

i∈S
(s)
t

(1− c) · p(i)t+1 · ∆x(i)t ,

where pt = (p(1)t ,p(2)t , . . . ,p(N)t ) denotes the vector of opening prices at day t
and c stands for a transaction cost.
This condition comes from the idea of self financing, which is discussed in the
next section.

The process begins with a portfolio x0 at time t0. Let X(1) be a space con-
sisting of all portfolios which can be obtained from x0 at time t1 according to the
process presented above. The purpose is to find a portfolio x1 ∈ X(1) minimiz-
ing the risk factor (i.e. semivariance) within the space X(1). By repeating this
process, a sequence of trading decisions, which constitutes an investor strategy,
can be obtained.

4.3 Idea of Self Financing

One of the main assumptions in this approach is the idea of self financing. All
funds are invested at the beginning of the trading process and, while the process
is running, funds can neither be added nor withdrawn. However, a small amount
of money can be used to fulfill the equality as defined in the previous section.

This amount of money is needed, because of the fact that trading decisions
are taken at a time, when the stock price is unknown. All calculations are made
after the market is closed. This means that the decisions made can be realized
the next trading day when the market is open. At the time these decisions are
made, the next day’s opening prices are unknown and they are approximated by
the previous day’s closing prices.

The important question is what to do in the case where S
(b)
t = ∅ or S

(s)
t = ∅.

If S
(b)
t = ∅, nothing is done, because the obtained funds cannot be invested

elsewhere. Similarly, if S
(s)
t = ∅, there will be no trading, because no funds are

obtained.
A special risk-free asset can be introduced which allows funds obtained in sell-

ing operations to be stored, and making it possible to realize buying operations
where there has been luck in selling transactions. In order to avoid a situation
where all the funds of the risk-free asset are invested on the first possible date, a
threshold is defined, which limits the percentage of funds available for investing
on one day.



5 Evolution Strategy

The process described in the previous section is optimized using an evolutionary
algorithm based on Evolution Strategies, described in detail in [19] and [20].
In this section, the modifications introduced to the standard algorithm are pre-
sented.

In this approach, a portfolio is encoded as a real valued vector of dimension
N , where N denotes the number of stocks included in the portfolio.

To evaluate the portfolios generated during the process of evolution, various
objective functions can be used. In the prototype designed here, several func-
tions, based on expected return and risk factors, are implemented. The available
objective functions are the following:

F1(x) =
1

1 + ε1 · SVar(Rx)
,

F2(x) =
1

1 + ε1 · SVar(Rx) + ε2 · |βx − βx0 |
,

F3(x) =
1

1 + ε1 · Cov(Rx, Ri) + ε2 · |βx − βx0 |
,

F4(x) =
1

1 + ε1 · SVar(Rx) + ε2 · Cov(Rx, Ri) + ε3 · |βx − βx0 |
,

where x0 denotes the initial portfolio, given by the user, Ri stands for the market
return and βx, βx0 stand for the β coefficient of the considered portfolio x and
the initial portfolio x0 respectively.
Factors ε1, ε2 and ε3 are used to tune the algorithm and to adjust the importance
of each component of the objective function. The objective functions refer to
some heuristics using parameters such as the β coefficient. By introducing the
difference between the βx of the generated portfolio and the βx0 of the portfolio of
reference, we penalize the portfolio having βx far away from βx0 of the reference.
Nevertheless, the performance of a solution is defined in terms of expected return
and risk of the portfolio on a test period as mentioned in previous sections.

Several methods of generating an initial population are used. The simplest
method is random generating with uniform probability. It consists of µ-times
random choosing of an individual from the search space. The probability of
choosing an individual is the same for every individual in the search space.

The second method uses an initial portfolio given by a user as an algorithm
parameter. An initial population is chosen from the neighborhood of the given
portfolio. This is done by generating a population of random modifications of
the initial solution.

Every individual in the initial population has to meet the financial con-
straints. Thus, after random generation, every individual undergoes a validation
process. If it is not accepted, it is replaced with another random-generated in-
dividual. In this way, the initial population is perfected, which means that it
satisfies all the desired conditions.



In the algorithm, common evolution operators such as reproduction and re-
placement are used.

In the process of reproduction, a population of size µ generates λ descendants.
Each descendant is created from ρ ancestors. Reproduction consists of three
parts: parent selection, recombination and mutation, repeated λ times.

Parent selection consists of choosing ρ parents from a population of size µ.
There are several commonly used methods of parent selection. The simplest
method is random choosing with uniform probability. One of the most popular
methods is random choosing using the ”roulette wheel”, which means that the
probability of choosing an individual is proportional to its value of the objective
function.

Recombination consists of generating one descendant from ρ parents chosen
earlier. The recombination operators described in the previous section, such as
no recombination, global intermediary recombination, local intermediary recom-
bination, and uniform crossover, are incorporated into the system.

The approach uses a self-adaptive mutation which is presented in [2] and [20].
The parameters of the mutation are encoded in an individual together with a
representation of the portfolio.

Each generated descendant has to undergo a process of verification in order
to satisfy several constraints. An individual is accepted if the portfolio that it
represents can be obtained in accordance with the trading process from the initial
portfolio. Otherwise, the individual is rejected, and the process of reproduction
is repeated. As a result of this verification, offspring are obtained according to
the trading process and the idea of self-financing is fulfilled.

In the replacement process, a new population of size µ is chosen from an old
population of size µ and its λ descendants.

The simplest method of replacement is deterministic selection. According to
this method, from (µ + λ) individuals, i.e. from the union of an old population
and its offspring, µ best survivals are chosen. But every individual can survive
no more than κ generations in history.

Apart from deterministic selection, the tournament selection can be used. To
start with, τ individuals are randomly chosen from the union of an old population
and its offspring. From these τ individuals, the best one is chosen for the new
population. By repeating this process µ times a new population is obtained.

Termination criteria include several conditions. The first condition is defined
by the acceptable level of valuation function value. The second is based on the
homogeneity of population, defined as a minimal difference between the best
and the worst portfolio. The third condition is defined as a maximal number of
generations. The algorithm stops when one of them is satisfied.

6 Experiments

All experiments have been carried out using the EPO (Evolutionary Portfolio
Optimizer) system described in details in [13]. The artificial trading experts
required have been generated by ACT system presented in [8].



Two general types of tests have been carried out. The first one refers to
a portfolio made up of 10 stocks randomly chosen among the stocks of the
CAC40 index. The purpose of the test was to evaluate the algorithm efficiency
for medium portfolios. The second type of tests refers to a portfolio consisting of
all 40 stocks of the CAC40. The purpose of this was to compare the performance
of each computed portfolio with that of the market portfolio approximated by
the index return.

Each test was repeated several times during different time periods to avoid
bias. In addition, various initial portfolios were used.

By selecting an initial portfolio and carrying out evaluations over the test
period for each day of the test period, the optimal portfolio was discovered. The
portfolio calculated for the next day would have been the optimal one, according
to the constraints defined by expert decisions and the principle of self-financing.
Table 5.1. presents an example of such investment strategy. Moreover, according
to the heuristics, the β coefficient of these portfolios will be relatively stable
as compared to its initial value. In addition, the performance of the result was
evaluated on the basis of expected return and risk, the latter being defined as the
semivariance of the portfolio return. Finally, the profit obtained in the suggested
trading process had a significant impact.

Table 5.1. Simulation
Date BNP Bouygues France Telecom Peugeot Renault TF1

09-29-2000 100 100 100 100 100 100
10-02-2000 182 80 73 88 174 19
10-03-2000 178 53 43 74 277 67
10-04-2000 148 66 7 91 395 28
10-05-2000 229 113 31 82 110 63
10-06-2000 224 45 67 91 94 47
10-09-2000 236 136 37 84 93 20
10-10-2000 178 65 70 56 323 17
10-11-2000 69 79 34 115 337 22
10-12-2000 215 147 18 72 185 46
10-13-2000 185 28 65 66 301 35

Source: Results obtained using EPO system.

Initial portfolios as well as test periods were randomly chosen. To begin with,
10 stocks were selected from these 40 making up the CAC40. Next, an initial
date (i.e. the start of the test period) was set. After that, an initial portfolio was
randomly generated. To check the efficiency of the approach more closely, the
experiment was repeated several time. Each time a different initial population
was chosen. Moreover, the whole experiment was repeated for a different initial
date.

In all experiments, the length of a test period was equal to 20 or 60 days. It is
worth noticing that the length of a test period had no influence on the algorithm
quality because the computation was carried out separately for each day. There



was no difference whether a period of 60 days was considered at once or three
separate periods of 20 days.

In order to assess the results, the final profit was compared with the profit
achieved by the Buy&Hold (B&H) strategy, which consists of keeping the initial
portfolio unchanged during the whole test period. In most cases, the suggested
strategy outperforms the simple B&H strategy. Although tightly linked to the
test period and current trends of the market, repeating these experiments several
times on different test periods confirmed the quality and the efficiency of the
proposed approach. The summary of obtained results is presented in the table
5.2.

Table 5.2. Summary of Results
Stocks Length of Number Number of results Number of results

test period of tests outperforming B&H outperforming index
10 20 days 10 9 2
10 20 days 10 10 1
10 20 days 10 6 10
10 20 days 10 7 10
10 60 days 10 8 0
10 60 days 10 10 10
40 20 days 10 7 1
40 60 days 10 4 0

Source: Results obtained using EPO system.

It is worth noting that the quality of the obtained results depends on the
quality of the artificial trading experts generated earlier (see the detailed study
of expert performance in [8]). Moreover, the current market situation is also
important because when the prices of a large number of stocks are increasing,
the results obtained are usually satisfactory, but they do not outperform the
Buy&Hold strategy. In the inverse case, when prices of a large number of stocks
are decreasing, the obtained profit will not be very high, but it is usually higher
than the profit of the Buy&Hold strategy. In order to appreciate the true quality
and effectiveness of performance more experiments on various financial markets
would be needed, although first test results are very promising.

7 Conclusions and Perspectives

This thesis presents the evolutionary approach to the problem of portfolio op-
timization. The goals and constraints of the problem have been presented and
an algorithm based on Evolution Strategies has been proposed. This approach
rejects some artificial assumptions used in theoretical models (such as perfect
divisibility of stocks); it introduces transaction costs and alternative risk mea-
sures such as the semivariance. The approach has been evaluated and validated
using real data from the Paris Stock Exchange.

In order to evaluate this approach, the resulting investment strategy has been
compared with the Buy-and-Hold strategy. To reduce the time period bias on



performance, several time series were selected. The results demonstrate that the
evolutionary approach is capable of investing more efficiently than the simple
Buy&Hold strategy.

The algorithm presented can be further improved by modifying evolutionary
operators, especially recombination. The fitness function study can also increase
the efficiency of the method. Moreover, the application of special random number
generators seems to be reasonable. Additional effort should be spent on methods
of portfolio validation in order to eliminate unacceptable solutions at the moment
of its creation.

The evolutionary approach in stock trading is still in an experimental phase.
Further research is needed, not only to build a solid theoretical foundation in
knowledge discovery applied to financial time series, but also to implement an
efficient validation model for real data. The approach presented seems to consti-
tute a practical alternative to classical theoretical models.
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